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Nonlinear equation for curved nonstationary flames and flame stability
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A time-dependent nonlinear equation for a nonstationary curved flame front of an arbitrary expansion
coefficient is derived under the assumptions of a small but finite flame thickness and weak nonlinearity. On the
basis of the derived equation, stability of two-dimensional curved stationary flames propagating in tubes with
ideally adiabatic and slip walls is studied. The stability analysis shows that curved stationary flames become
unstable for sufficiently wide tubes. The obtained stability limits are in a good agreement with the results of
numerical simulations of flame dynamics and with semiqualitative stability analysis of curved stationary
flames. Possible outcomes of the obtained instability at the nonlinear stage are discussed. The instability may
result in extra wrinkles at a flame front close to the stability limits and in self-turbulization of the flame far
from the limits. The self-turbulization can also be interpreted as a fractal structure. The fractal dimension of a
flame front and velocity of a self-turbulized flame are evaluated.@S1063-651X~99!00809-0#

PACS number~s!: 47.20.2k, 82.40.Py, 47.53.1n
e

el

a
ab
su
a
u

-

n

m

es

D
p
fu

of
e
a
a

bu
o

o

the

vi-
case

le
tes

he
ary
el-
rved
s
al
e

e
e

ent
rved
f

is
ew
of

er-
he
w

the
ta-
I. INTRODUCTION

One of the most important issues in combustion scienc
the velocity of flame propagation@1,2#. While velocity of a
planar flameU f is determined by thermal and chemical fu
parameters, the resulting velocity of flame propagationUw
depends also on the flame shape: the more curved
wrinkled the flame front, the faster it propagates. In the
sence of external turbulence a curved flame shape re
from intrinsic flame instabilities such as the Darrieus-Land
~DL! instability inherent to any premixed flame in a gaseo
fuel @3#. It follows from the linear theory of the DL instabil
ity that a planar flame front is bent by two-dimensional~2D!
and three-dimensional~3D! perturbations, if the perturbatio
wavelength exceeds the cutoff wavelengthlc determined by
thermal conduction and finite flame thickness@4#. Typically,
the cutoff wavelength is considerably larger than the fla
thickness L f and for most of the laboratory flameslc
.20L f . Numerical simulations of flame dynamics in tub
of moderate widthlc/2,R,3lc/2 with ideally adiabatic
and slip walls have shown that at the nonlinear stage the
instability results in a smooth curved stationary flame sha
which may be described as a hump directed towards the
and a cusp pointing to the burnt matter@5–7#, see Fig. 1~a!.

If we consider a tube width much larger than the cut
wavelength, then the stabilizing influence of the curv
shape weakens and a curved stationary flame presum
becomes unstable against perturbations of a small sc
much smaller than the curvature radius of the flame
larger than the cutoff wavelength. Qualitative description
such secondary DL instability may be found in@8#, where the
stabilizing influence of flame stretch on the development
PRE 601063-651X/99/60~3!/2897~15!/$15.00
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the secondary instability has been pointed out. In@8# stability
of curved flames has been discussed in the scope of
model of an infinitely thin front, which implies infinite ratio
of the tube width and the cutoff wavelengthR@lc , as well
as the strongly developed secondary DL instability. Ob
ously, such an extreme case must be separated from the
of tubes of moderate widthR,3lc/2 by a critical tube width
Rw , so that forR,Rw curved stationary flames are stab
and for R.Rw they become unstable. Qualitative estima
@8# give the critical tube width aboutRw55lc/2 for flames
with realistic ratio of the fuel density and the density of t
burning products. Close to the stability limits the second
instability may take the form of an extra cusp which dev
ops at the hump of a stationary flame, as has been obse
in 2D simulations@9#; see Fig. 1~the flame front propagate
to the left!. Development of an extra cusp leads to addition
amplification of the flame velocity in comparison with th
velocity of a curved stationary flame.

Far away from the stability limits in very wide tubes, th
secondary DL instability results in fractal structure of a flam
front with many cascades of humps and cusps of differ
scales imposed one on another similar to the flames obse
experimentally in@10#. As a matter of fact, development o
the fractal structure has been interpreted in@10# as spontane-
ous turbulization of a flame front. The last interpretation
quite reasonable, since from the experimental point of vi
fractal flames do look like turbulent ones. In the case
self-turbulized flames velocity of flame propagation is det
mined by the tube width and by the fractal dimension of t
flame front. To find the fractal dimension one has to kno
the increase of the flame velocity and of the linear size of
humps on every step of the fractal structure. A curved s
2897 © 1999 The American Physical Society
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2898 PRE 60V. V. BYCHKOV, K. A. KOVALEV, AND M. A. LIBERMAN
tionary flame may be considered as one step of the fra
structure at the flame front. Respectively, the fractal dim
sion of a flame front may be evaluated on the basis of
theory of dynamics and stability of curved stationary flam
@11#. The velocity increase on one step of the fractal str
ture is given by the velocity amplification for curved statio
ary flames in comparison with planar ones. The increas
the linear size of the humps on one step of the fractal st
ture follows from stability limits of curved stationary flame
While the velocity amplification for curved stationary flam
has been obtained both numerically@6,7# and analytically
@12,13#, the problem of stability limits is not solved yet.

For a long time dynamics of curved flames has been
vestigated on the basis of the nonlinear Sivashinsky equa
@14# derived in the limit of small fuel expansionQ21!1,
whereQ is defined as the ratio of the fuel density and t
density of the burnt matter. Analytical solution of a 2D ve
sion of the nonlinear equation has been found in@15#. It has
also been shown in@15# that the obtained curved stationa
solutions are linearly stable against all perturbations o
small amplitude no matter how wide the ideal tube where
flame propagates is. This surprising result obviously con
dicts the above physical ideas on the stability of a curv
flame. In order to avoid the contradiction it was proposed
@16# that the curved stationary flames are linearly stable,

FIG. 1. Development of a curved flame front with an extra cu
observed in numerical simulations@9# in a tube with ideally adia-
batic and slip walls.~a!, ~b!, and~c! correspond to the time instant
U ft/L f578.8,107.6,379.8after the initiation of the DL instability
at a planar flame front.
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nonlinearly unstable against perturbations of some finite a
plitude. It was proposed also that the perturbation amplitu
needed to induce the nonlinear instability goes to zero as
tube width goes to infinity. However, the critical tube wid
for which a curved stationary flame may become unsta
could not be determined from the analysis@16#.

When the Sivashinsky equation and its modifications h
been used to study fractal flame structure researchers
faced a problem. Though in many works based on the n
linear equation@14# flame shapes resembling fractal structu
have been reported@17–21#, still quite different values of
flame fractal dimension have been found in different pape
It was even claimed in@19# that it is impossible to describe
fractal flame in the scope of the Sivashinsky equation.
deed, if the fractal dimension depends on the expansion
efficient Q of the flame as was shown in@19#, then fractal
flames cannot be obtained within the theory@14# since the
Sivashinsky equation in a scaled form does not contain
expansion coefficient as a parameter.

Another shortcoming of the theory@14# is that the limit of
small expansion coefficientsQ21!1 for which the Sivash-
insky equation has been derived is rather peculiar, be
quite far from the case of realistic laboratory flames w
Q55 –10. To overcome this drawback, a nonlinear equat
for a curved stationary flame of an arbitrary expansion co
ficient has been derived in@12#. In the reference frame of a
curved stationary flamez5F(x)2Uwt the nonlinear equa-
tion takes the form

12Uw /U f1
Q

2
~“F !21

~Q21!3

16Q
2@~“F !22~F̂F !2#

5
Q21

2 S F̂F1
lc

2p
“

2F D , ~1!

whereU f is the velocity of a planar flame, the operatorF̂ is
defined as

F̂F5
1

4p2E2`

`

ukuFk exp~ ik•x!dk, ~2!

andFk is the Fourier transform ofF. The stationary nonlin-
ear equation predicts quite well the velocity amplification
curved stationary flames both for the cases of 2D flames@12#
and 3D flames in cylindrical tubes@13#. Particularly, the
maximal possible velocity amplification for a 2D curved st
tionary flame predicted on the basis of Eq.~1!,

Um[max~Uw2U f !5
Q

2

~Q21!2

Q31Q213Q21
U f , ~3!

is in a very good agreement with the results of numeri
simulations@6#.

In the present paper we derive a time-dependent nonlin
equation for a nonstationary curved flame front of an ar
trary expansion coefficient under the assumptions of a sm
but finite flame thickness and weak nonlinearity. In the line
case of small perturbation amplitude the derived equa
reproduces the dispersion relation for the perturbat
growth rate@4#. For the case of stationary flames the deriv
equation goes over to the nonlinear equation~1! @12# and in

p
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the limit of a small expansion coefficientQ21!1 it coin-
cides with the Sivashinsky equation@14#. Linearizing the ob-
tained equation around the stationary solutions@12# we in-
vestigate stability of a 2D curved stationary flame. Solut
of the eigenvalue stability problem shows that the curv
stationary flames become unstable for sufficiently w
tubes. The obtained stability limits are in a good agreem
with the stability limits found in numerical simulations o
flame dynamics@9# and in semiqualitative stability analys
of curved stationary flames@8#. Possible outcomes of th
obtained instability at the nonlinear stage are discussed.
fractal dimension of self-turbulized flames is evaluated.

II. THE MODEL OF A THIN FLAME FRONT

We consider a 2D incompressible flow caused by
curved nonstationary flame propagating in an initially u
form fuel. A typical example of such a flame is a flame fro
in a tube of widthR with ideally adiabatic and slip walls like
that shown in Fig. 1. The fuel is assumed to be an ideal
with a constant coefficient of thermal conduction and a c
stant specific heat; the fuel diffusion coefficient is equal
the coefficient of thermal diffusivity~Lewis number is equa
to unity!. We assume that there are no external source
vorticity, so that the curved flame shape results from dev
opment of the DL instability. Since the DL instability is no
affected by viscosity@6,12,22# we consider an inviscid flow
Pr 5 0. Typically flame thicknessL f is much less than the
hydrodynamical length scale~e.g., the tube widthR), so that
a flame may be described in the scope of the discontin
model of a thin flame front@4,23#. Though this model treats
a flame as a discontinuity surface, the small but finite thi
ness is taken into account as an external parameter in
equation of flame evolution and in the conservation laws
the flame front. We shall use the evolution equation o
flame front and the conservation laws which have been
rived in @4,23# in the limit of a small flame thicknessL f /R
!1. Particularly, in the case Le51, Pr50 evolution of a
flame frontF(x,t)50 is described by the equation

n•v21
1

N

]F

]t
5U f2L f

Q ln Q

Q21

3S 1

N

]N

]t
1

1

N
“•@N~v22U fn!# D , ~4!

while the conservation laws may be written as

rS n•v1
1

N

]F

]t D U
2

1

5r2L f ln Q

3S 1

N

]N

]t
1

1

N
“•@N~v22U fn!# D ,

~5!

n3vu2
15

L fQ ln Q

U f
n3D̂t~v22U fn!, ~6!
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FP1rS n•v1
1

N

]F

]t D 2GU
2

1

52L fr2U f
2~Q21!“•n

1L fr2Q ln QS U f

N
D̂tN1n•

]v2

]t

1n•~v2•“ !v2D , ~7!

with the introduced operatorD̂t5]/]t1v2•“2U fn•“.
Here the labels2 and1 correspond to the flows just ahea
and just behind the flame front,n5“F/N is the unit normal
vector directed to the burning products and the designa
N5u“Fu is introduced. The left-hand sides of Eqs.~5!–~7!
are usual conservation laws at a surface of discontinuity
zero thickness@3#, the right-hand sides of Eqs.~5!–~7! show
the influence of thermal conduction and finite flame thic
ness on dynamics of a curved flame front. The unknown fl
just ahead of the flame front results from flame evolution,
that v2 in Eqs. ~4!–~7! is some functional ofF, which we
have to find. To find the relation betweenv2 andF we have
to solve the equations of ideal hydrodynamics ahead
behind the flame front,

“•v50, ~8!

]v

]t
1~v•“ !v1

1

r
“P50, ~9!

and match these solutions at the flame front of a small
finite thickness by use of the conservation laws.

It is convenient to introduce the dimensionless variab
(h;j)5(x/R;z/R), t5U ft/R, (w;u)5v/U f , P5(P
2Pf)/r2U f

2 , wherePf is the initial pressure of the fuel fa
ahead of the flame front atz→2`. We introduce also the
small parameter«5L f /R!1, which characterizes the rati
of the flame thickness and the channel width. For the int
duced variables the 2D equations of ideal hydrodynam
become

]u

]j
1

]w

]h
50, ~10!

]w

]t
1u

]w

]j
1w

]w

]h
52

1

r

]P

]h
, ~11!

]u

]t
1u

]u

]j
1w

]u

]h
52

1

r

]P

]j
, ~12!

where the scaled density isr 51 for the fuel andr 51/Q for
the burnt matter. We consider a flow in the reference fra
of the curved stationary flame moving with velocityUw . It is
convenient to introduce the scaled velocity of a curved s
tionary flameW5Uw /U f21. Though we adopt an inertia
reference frame of a stationary front, in general a flame fr
is not stationary and the evolution equation for a curv
flame frontj5 f (h,t) takes the form
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] f

]t
2u21w2

d f

dh
2N5«

Q ln Q

Q21 S ]N

]t
1

d

dh
~Nw2!1

d2f

dh2D ,

~13!

where the valueN in the 2D configuration becomesN
5A11(d f /dh)2. Taking into account Eq.~13! the conser-
vation laws at the flame front may be written as

u12u22
d f

dh
~w12w2!5~Q21!N, ~14!

w12w21
d f

dh
~u12u2!

5« ln QS D̂tw21
d f

dh
D̂tu21

1

N
D̂t

] f

]h D , ~15!

P11
N22

Q S u12
] f

]h
w12

] f

]t D 2

2P22N22S u22
] f

]h
w22

] f

]t D 2

5«~Q21!
]

]h S 1

N

] f

]h D1
« ln Q

N

3S ]2f

]t2
12w2

]2f

]t]h
1w2

2 ]2f

]h2
12D̂t N2

1

N

]f

]h

]N

]hD ,

~16!

where

D̂t5
]

]t
1w2

]

]h
1

1

N

] f

]h

]

]h
. ~17!

Since there are no other sources of vorticity except
curved flame itself, upstream of the flame front one has

]u

]h
2

]w

]j
50, ~18!

and the velocity potentialu5]w/]j, w5]w/]h may be in-
troduced for the upstream flow. Pressure in a potential fl
is determined by Bernoulli’s equation

P5
1

2
~11W!22

1

2
~u21w2!2

]w

]t
. ~19!

In order to describe the vorticity flow behind the curv
flame we introduce the stream function

u5
]c

]h
, w52

]c

]j
, ~20!

which obeys the equation

S ]

]t
1v•“ D“2c50 ~21!

describing vorticity drift by the flow.
e

w

In the above statement of the problem a planar flame fr
corresponds tof 50, W50. The fuel flows towards the pla
nar front with the velocityu51, w50 and the burnt matte
is drifted away with the velocityu5Q, w50. As the fuel
passes the planar flame, the density of the burning ma
changes fromr 51 to r 51/Q and the scaled pressure dro
from P50 to P52Q11.

III. THE NONLINEAR EQUATION FOR A CURVED
NONSTATIONARY FLAME

We are going to derive the nonlinear equation describ
dynamics of a curved nonstationary flame under the assu
tions of a thin flame front«!1 and weak nonlinearity. Thes
assumptions have been employed in the derivation of
stationary nonlinear equation Eq.~1! and proved to be a suc
cess. Besides, the assumption of a thin flame front was u
in the discontinuity model Eqs.~4!–~7!, so that it is the only
justified approach to the formulated problem.

It is convenient to distinguish the nonstationary comp
nents of all flow parameters by introducing the followin
variables for the flow ahead of the flame front:

u511W1ũ, w5w̃, P5P̃, w5~11W!j1w̃
~22!

and for the flow behind the flame:

u5Q1W1ũ, w5w̃, P52Q111P̃,

c5~Q1W!h1c̃. ~23!

By order of magnitude the scaled velocity of a curved s
tionary flame isW}(] f /]h)2. Since the flow ahead of the
flame front is potential, then the solution for the veloci
components in the incoming flow is

ũ5
1

2pE2`

1`

ũk exp~ uKuj1 iKh!dK, ~24!

w̃5F̂21
]ũ

]h
, ~25!

w̃5F̂21ũ. ~26!

For the scaled variables the operatorF̂ implies multiplica-
tion by the absolute value of the scaled wave numberK
5kR in the Fourier space, while the inverse operator cor
sponds to division by the absolute value of the wave numb
Obviously, for the inverse operator one has the iden

F̂21F̂ f 5 f . Pressure in the incoming flow follows from th
Bernoulli equation, which takes the following form in th
approximation of the second order nonlinearity:

P̃52
]w̃

]t
2ũ2

1

2
~ ũ21w̃2!. ~27!

Keeping only the nonlinear terms of the second order a
taking into account the condition of the small flame thickne
«!1 we can rewrite the conservation laws at the flame fr
as
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ũ12ũ22~w̃12w̃2!
] f

]h
5

Q21

2 S ] f

]h D 2

, ~28!

w̃12w̃21~Q21!
] f

]h
5« ln QS ]w̃2

]t
1

]2f

]t]h
D , ~29!

P̃12P̃22
Q21

Q S ũ22
] f

]t D 2

5«~Q21!
]2f

]h2
1« ln Q

]2f

]t2
.

~30!

With the same accuracy the evolution equation for the fla
front becomes

] f

]t
1w̃2

] f

]h
2ũ22W1

1

2 S ] f

]h D 2

5«
Q ln Q

Q21 S ]w̃2

]h
1

]2f

]h2D .

~31!

A. First order approximation

In the first order approximation we take into account t
first order terms in perturbations for an infinitely thin fro
(«50). In this approximation parameters of the incomi
flow satisfy the relations

w̃25F̂21
]ũ2

]h
, ~32!

P̃252ũ22F̂21
]ũ2

]t
, ~33!

while the conservation laws at the flame front take the fo

ũ15ũ2 , w̃15w̃22~Q21!
] f

]h
, P̃15P̃2 . ~34!

In the linear approximation Eq.~21! can be rewritten as

S ]

]t
1Q

]

]j D“2c̃50. ~35!

Any solution to Eq.~35! may be presented as a sum of t
potential modec̃p and the vorticity modec̃v . The potential
mode satisfies the relations

“

2c̃p50, ~36!

ũp5
1

2pE2`

1`

ũpk exp~2uKuj1 iKh!dK, ~37!

w̃p52F̂21
]ũp

]h
, ~38!

P̃p52ũp1
1

Q
F̂21

]ũp

]t
, ~39!

while for the vorticity mode one has

S ]

]t
1Q

]

]j D c̃v50, ~40!
e

1

Q

]ũv

]t
5

]w̃v

]h
, ~41!

P̃v50. ~42!

Taking into account that ũv5ũ2ũp , w̃v5w̃2w̃p , P̃

5P̃p , we get the equation for the variables in the dow
stream flow in the first order of approximation

F̂P̃1
]w̃

]h
2

1

Q

]ũ

]t
50. ~43!

Substituting Eqs.~32!–~34! into Eq. ~43!, we have the fol-
lowing linear relation between perturbations of the flam
front and the velocity perturbations just ahead of the fla
front:

ũ21
Q11

2Q
F̂21

]ũ2

]t
5

Q21

2
F̂ f . ~44!

Another relation of these two values follows from the ev
lution equation~31!, which becomes in the first order ap
proximation

ũ25
] f

]t
. ~45!

The linear equation for flame front perturbations is obtain
by substitutingũ2 from Eq. ~45! into Eq. ~44!:

Q11

2Q
F̂21

]2f

]t2
1

] f

]t
2

Q21

2
F̂ f 50. ~46!

The above equation gives the same dispersion relation for
perturbation growth rate as that of the DL instability for a
infinitely thin flame front in the linear approximation@3#.
The nonlinear equation for a flame front of finite thickness
the next order approximation. In order to find the nonline
equation it is convenient to introduce a functionf as

ũ25
Q21

2 H F̂f1«
]2f

]h2
2

~Q21!2

8Q F S ]f

]h D 2

2~F̂f!2G J
~47!

and the following designation:

A5
Q11

2Q
F̂21

]f

]t
. ~48!

In the case of the curved stationary flames@12# the relation
Eq. ~47! couples the velocity perturbationũ2 and the flame
front positionf.

For the introduced function one has in the first order
approximation

f 5f1A, ~49!

ũ25
Q21

2
F̂f, ~50!
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w̃25
Q21

2

]f

]h
, ~51!

P̃252
Q21

2 S ]f

]t
1F̂f D , ~52!

ũ15ũ2 , P̃15P̃2 , ~53!

w̃152w̃22~Q21!
]A

]h
, ~54!

]A

]t
1

]f

]t
5

Q21

2
F̂f. ~55!

B. Second order approximation

In the second order approximation we take into acco
the second order terms in perturbations and first order te
in perturbations proportional to the small flame thicknes«
!1. Though we are interested in the nonlinear equation
the flame front positionf, it is easier to perform calculation
with respect to the artificially introduced functionf, Eq.
~47!. In the second order approximation we can rewrite
evolution equation~31! in the form

2W1
] f

]t
1

Q

2 S ]f

]h D 2

1
~Q21!3

16Q F S ]f

]h D 2

2~F̂f!2G
1

Q11

2

]f

]h

]A

]h
1

1

2 S ]A

]h D 2

5
Q21

2
F̂f

1
«

2 FQ ln Q
Q11

Q21
1Q21G]2f

]h2
2

« ln Q

2

Q11

Q21
F̂

]f

]t
.

~56!

For a curved stationary flame front one has

f 5 f ~h!, f5f~h!, W5Uw /U f21, A50,
~57!

and Eq.~56! coincides with the scaled nonlinear stationa
equation~1! derived in@12#:

12Uw /U f1
Q

2 S ]f

]h D 2

1
~Q21!3

16Q F S ]f

]h D 2

2~F̂f!2G
5

Q21

2
F̂f1

«

2 S Q ln Q
Q11

Q21
1Q21D ]2f

]h2
. ~58!

In the case of a curved stationary flame the introduced fu
tion f plays the role of the flame front position, while in
general nonstationary case the difference between the f
tion f and the flame front position is related to tim
dependent terms. In order to solve the problem of flame
namics we have to complement the evolution equation~56!
with the nonlinear nonstationary equation, which relates
flame front positionf to the functionf. In the second orde
approximation the solution just ahead of the flame front m
be written as
t
s

r

e

c-

c-

y-

e

y

ũ25ũ022
Q21

2
~f1A!

]2f

]h2
, ~59!

w̃25F̂21
]ũ02

]h
1

Q21

2
~f1A!F̂

]f

]h
, ~60!

P̃252F̂21
]ũ02

]t
2ũ022

Q21

2
~f1A!F̂

]f

]t

1
Q21

2
~f1A!

]2f

]h2
2

1

2
~ ũ2

2 1w̃2
2 !. ~61!

Within the same accuracy the solution just behind the fla
front takes the form

ũ15ũ011
Q21

2
~f1A!

]2f

]h2
1~Q21!~f1A!

]2A

]h2
,

~62!

w̃15w̃011
Q21

2
~f1A!F̂

]f

]h
1

Q21

Q
~f1A!

3
]2

]t]h S Q11

2
f1AD , ~63!

P̃15P̃011
Q21

2
~f1A!F̂

]f

]t
2

Q21

2
~f1A!

]2f

]h2
.

~64!

In the second order approximation the conservation la
Eqs. ~28!–~30! give the following expressions fo

ũ01 ,w̃01 ,P̃01 :

ũ015ũ022~Q21! f
]2f

]h2
2

Q21

2 S ] f

]h D 2

, ~65!

w̃015F̂21
]ũ02

]h
2~Q21!

] f

]h
1« ln QS ]w̃2

]t
1

]2f

]t]h
D

2
Q21

Q
~f1A!

]2

]t]h S Q11

2
f1AD , ~66!

P̃0152F̂21
]ũ02

]t
2ũ022~Q21!~f1A!F̂

]f

]t
1~Q21!

3~f1A!
]2f

]h2
2

1

2
~ ũ2

2 1w̃2
2 !2

Q21

Q S ũ22
] f

]t D 2

1«~Q21!
]2f

]h2
1« ln Q

]2f

]t2
. ~67!

The equation for the stream function in the downstream fl
of burnt matter within the accuracy of the second order n
linearity may be written as

S ]

]t
1Q

]

]j D“2c̃52S ũ
]

]j
1w̃

]

]h D“2c̃v . ~68!
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In this approximation Eq.~68! is a linear equation with con
stant coefficients and the known right-hand side defined
solutions~38!–~42!. Obviously, the general solution of Eq
~68! is a superposition of the potential modec̃p , Eqs.~36!–
~39!, of the vorticity modec̃v , Eqs.~40!–~42!, and any par-
ticular solutionc̃a of Eq. ~68!. Therefore, in order to find the
solution in the downstream flow one needs to construct
particular solution of Eq.~68!. Taking into account the con
tinuity equation for the perturbed velocity“•ũ50 we can
rewrite Eq.~68! in the form

S ]

]t
1Q

]

]j D“2c̃a52“•~ ũ“2c̃v!. ~69!

For example, we may choose a particular solutionc̃a that
satisfies the equation

S ]

]t
1Q

]

]j D“c̃a52ũ“2c̃v , ~70!

which may also be written in components as

]ũa

]t
1Q

]ũa

]j
1w̃S ]ũv

]h
1

1

Q

]w̃v

]t
D 50, ~71!

]w̃a

]t
1Q

]w̃a

]j
2ũS ]ũv

]h
1

1

Q

]w̃v

]t
D 50. ~72!
y

y

Taking into account Eqs.~11!,~72!, and the structure of the
potential and vorticity modes Eqs.~36!–~42! one comes to
the equation

S ]

]t
1Q

]

]j D w̃p1
]

]h
S QP̃1

ũ2

2
1

w̃2

2
D 50. ~73!

Substituting Eqs.~38!,~72! into Eq. ~73! we obtain the equa-
tion for the variables in the downstream flow,

]ũ

]t
2Q

]w̃

]h
2F̂S QP̃1

ũ2

2
1

w̃2

2
D 1w̃S ]ũv

]h
1

1

Q

]w̃v

]t
D 50,

~74!

which can also be presented in the form

]ũ

]t
2Q

]w̃

]h
2F̂S QP̃1

ũ2

2
1

w̃2

2
D 1w̃S ]ũ

]h
1

1

Q

]w̃

]t
1

]P̃

]h
D

50. ~75!

In the linear approximation the obtained condition in t
downstream flow goes over to Eq.~43!.

As soon as the condition in the downstream is found
desired nonlinear equation follows from the upstream con
tions Eqs.~59!–~61!, the conservation laws~65!–~67!, and
the downstream condition Eq. ~75!. Substituting

ũ01 ,w̃01 ,P̃01 from Eqs.~65!–~67! into Eq. ~75! one has
y of
~Q11!
]ũ02

]t
12QF̂ũ021Q~Q21!

]2f

]h2
2«Q ln QS ]2w̃2

]t]h
1

]3f

]t]h2D 2«Q~Q21!F̂
]2f

]h2
2«Q ln QF̂

]2f

]t2
1~Q21!F̂

3FQ f F̂
]f

]t
2Q f

]2f

]h2
1

1

2
~w̃2

2 2ũ2
2 !1

] f

]t S 2ũ022
] f

]t D2
Q21

2

]A

]h

] f

]hG2~Q21!
]

]t S f
]2f

]h2D 2
Q21

2

]

]t S ] f

]h D 2

1
~Q21!2

2

]

]h F f S ]2f

]t]h
1F̂

]f

]h D G1
~Q21!3

4Q S ]f

]h
12

]A

]h D S ]2f

]t]h
1F̂

]f

]h D50. ~76!

According to the definition off, Eq. ~47!, one finds

ũ025
Q21

2
F̂f1

Q21

2
~f1A!

]2f

]h2
1«

Q21

2

]2f

]h2
2

Q21

4Q
~w̃2

2 2ũ2
2 !. ~77!

Finally, substitutingũ02 into Eq. ~76! one comes to an equation relating position of the flame frontf and the introduced
function f,

Q
]2

]h2
~ f 2f2A!1«

Q ln Q

Q21

]

]t S Q11

2Q
F̂

]f

]t
2

]2f

]h2D 1~Q21!2
Q11

16Q

]

]t F ~F̂f!22S ]f

]h D 2G
1

]

]h F ~f1A!
]2

]t]h S Q11

2
f1AD G1

Q21

2Q S ]f

]h
12

]A

]h D ]2

]t]h S Q11

2
f1AD1

]

]t F ~f1A!
]2

]h2 S Q21

2
f2AD

2
1

2 S ]f

]h
1

]A

]h D 2G1F̂F2
Q21

2 S ]A

]h D 2

2
Q21

2

]f

]h

]A

]h
1Q~f1A!F̂

]f

]t
1S ]f

]t
1

]A

]t D 2G50. ~78!

Equation~56! complemented by Eq.~78! determines evolution of a curved nonstationary flame front with the accurac
second order nonlinearity. Together Eqs.~56!,~78! may be written in the form of a single equation as
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]2

]h2
C02C150, ~79!

where the first termC0 is the combination of the linear dispersion relation for a flame front of finite thickness@4# and the
nonlinear stationary equation~1!,

C05
Q11

2Q
F̂21

]2f

]t2
1S 11«

Q ln Q

Q21
F̂ D ]f

]t
2W1

Q

2 S ]f

]h D 2

1
~Q21!3

16Q F S ]f

]h D 2

2~F̂f!2G
2

Q21

2 S F̂f1
lc

2pR

]2f

]h2D . ~80!

The second termC1 in Eq. ~79! represents the nonlinear time-dependent part of the equation

C152
1

2

]2

]h2 F ~Q11!
]f

]h

]A

]h
1S ]A

]h D 2G1~Q21!2
Q11

16Q2

]2

]t2 F ~F̂f!22S ]f

]h D 2G1
Q21

2Q

]

]t F ]2f

]t]h S ]f

]h
1

]A

]h D
1F̂f

]2

]h2 S Q21

2
f2AD G1

]

]t F ~f1A!
]3f

]t]h2G1
~Q21!2

4Q2

]

]t F S ]f

]h
12

]A

]h D ]

]h S ]f

]t
1F̂f D G

1F̂
]

]t F ~Q21!2

4Q
~F̂f!21~f1A!F̂

]f

]t
2

Q21

2Q

]A

]h S ]f

]h
1

]A

]h D G . ~81!
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The designationA stands for the combinationA5(Q
11)/2QF21]f/]t, Eq. ~48!, and the flame front positionf
is calculated from the introduced functionf by use of Eq.
~78!. Time derivatives in nonlinear terms and in linear term
proportional to the scaled flame thickness« of Eq. ~81! were
reduced taking into account the linear relation~55!. The di-
mensional form of the nonlinear equation for a curved fla
front z5F(x,t)2Uwt is recovered from Eq.~79! by substi-
tution of the expressions for the scaled variablesh5x/R,t
5U ft/R, for the scaled wave numberK5kR in the operator

F̂, for the parameter«5L f /R characterizing flame thick
ness, for the scaled flame front positionf 5F/R, and for the
introduced functionf5Ff /R. The resulting dimensiona
nonlinear equation does not contain the hydrodynam
length scaleR. In order to go over to a 3D configuration on
can replace the spatial derivative]/]x in Eq. ~79! by “ and

the absolute value of the wave numberuku in the operatorF̂
by uku. For example, the expression for the first termC0 of
Eq. ~79! in a 3D configuration for dimensional variable
takes the form

C05
Q11

2Q
F̂21

1

U f
2

]2Ff

]t2
1S 11L f

Q ln Q

Q21
F̂ D 1

U f

]Ff

]t
11

2
Uw

U f
1

Q

2
~“Ff!21

~Q21!3

16Q
@~“Ff!22~F̂Ff!2#

2
Q21

2 S F̂Ff1
lc

2p
“

2FfD . ~82!

In the linear case of a slightly perturbed flame front the n
linear equation~79! goes over to the equation describing t
linear stage of the DL instability at a planar flame of fin
s

e

al

-

thickness derived in Ref.@4#, with Le 5 1 and constant co-
efficient of thermal conduction

Q11

2Q
F̂21

]2f

]t2
1S 11«

Q ln Q

Q21
F̂ D ]f

]t

2
Q21

2 S F̂f1
lc

2pR

]2f

]h2D 50. ~83!

For a curved stationary flame front Eq.~79! is consistent
with Eq. ~1! and, finally, in the limit of a small expansio
coefficientQ21!1 time evolution of a flame front become
slow, ]f/]t}u(Q21)f, and Eq. ~79! goes over to the
Sivashinsky equation@14#.

Though in the present paper the nonlinear equation~79!
for a curved flame front has been derived for Le51, nonvis-
cous flow, and constant coefficient of thermal conducti
this equation is also applicable to a flame in a viscous f
with an arbitrary dependence of the transport coefficients
temperature and any Lewis number, for which the therm
diffusion instability does not occur. These corrections le
only to certain changes of the coefficients in front of t
linear terms in Eq.~80! that may be written as

C05
Q11

2Q
~11«C1F̂!F̂21

]2f

]t2
1~11«C2F̂!

]f

]t

112Uw /U f1
Q

2 S ]f

]h D 2

1
~Q21!3

16Q F S ]f

]h D 2

2~F̂f!2G
2

Q21

2
~12«C3F̂!F̂f. ~84!
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The general form of the coefficientsC1 , C2, and C3 has
been presented in@24#. On the other hand, the nonlinea
terms of Eq.~79! remain the same independent of the Lew
number, viscosity, and the coefficient of thermal conducti

IV. STATIONARY CURVED FLAMES

Let us consider dynamics and stability of 2D curved s
tionary flames propagating in tubes with ideally slip a
adiabatic walls. An example of a curved stationary fla
with Q58 observed in 2D numerical simulations@6,9# for a
tube of moderate widthR5lc is presented in Fig. 2. The
configuration of a flame in a tube with ideal walls describ
also the case of a flame front with a periodic spatial structu
since ideal walls may be treated as symmetry axes. In
case the tube widthR determines half of the spatial period
which, consequently, equals 2 in the scaled units. Since
deal with the functionf related to the flame positionf in a
nonlinear way, Eq.~78!, then in the following it is easier to
consider periodic boundary conditions onf, keeping in
mind that these conditions are equivalent to adiabatic co
tions at ideal walls placed in the points where] f /]h50.

Dynamics of the stationary flames in the chosen confi
ration has been studied in@12# on the basis of the nonlinea
equation~1!. Stationary solution of Eq.~79! corresponds to a
curved stationary flame front withf5f(h), W5Uw /U f
21, A50, for which the complete time-dependent nonline
equation~79! is reduced to the stationary equation~58!. So-
lution of the stationary equation~58! has been found in@12#
by the method of pole decomposition@15#

fs52
lc

2R

Q21

pQ~114v! (
a51

2M

ln sinS p
h2ha

2 D , ~85!

whereha are poles in the complex plane coming in con
gate pairsha ,ha* with imaginary parts Imha52Im ha* . M
is the total number of pole pairs and the designation

v5
~Q21!3

16Q2
~86!

is introduced for the value characterizing influence of fla
generated vorticity on dynamics of the flame front@12#. The
boundary conditions at the tube walls are taken into acco
by the periodic structure of the pole terms in the represe

FIG. 2. The shape of a stationary curved flame with the exp
sion coefficientQ58 observed in numerical simulations@9# in a
tube of widthR5lc with ideally adiabatic and slip walls.
.
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tion Eq. ~85!: ln sin@(p/2)(h2ha)#. For the solution withM
pairs of poles the flame velocity is calculated from Eq.~58!
as

Uw2U f54Um

Mlc

2R S 12
Mlc

2R D , ~87!

where the maximal velocity amplification is given by Eq.~3!.
Typical dependence of the velocity amplification on t
scaled inverse tube widthlc/2R is shown in Fig. 3. One can
find from Eq.~87! that for a fixed tube widthR the maximal
velocity of a curved stationary flame is provided by a so
tion with the number of pole pairsM5Int@R/lc1 1

2 #. The
last result implies that for wide tubes solutions with a lar
number of poles become of importance: the wider the tu
the larger the numberM of pole pairs.

The positions of the poles in the complex plane are de
mined by the set of equations

lc

2R

112v

114v (
aÞb

2M21 F11sgn~ Im ha Im hb!
2v

112vG
3cotS p

ha2hb

2 D1 i sgn~ Im ha!F12
4vM

114v

lc

2RG50,

~88!

that follows from Eq.~58! after substitution of the stationar
solution Eq.~85!. Particularly, in the simplest case of on
pair of polesM51 the pole positions may be chosen
ha5 ib,ha* 52 ib and the set of equations~88! is reduced to
one equation for the parameterb,

lc

2R

112v

114v S 12
2v

112v D cot~ ipb!1 i S 12
lc

2R

4v

114v D50,

~89!

which defines the position of the pair of poles via the sca
tube width as

-

FIG. 3. Dependence of the scaled velocity amplification (Uw

2U f)/Um on the scaled inverse tube widthlc/2R for curved sta-
tionary flames. Solid line shows the solutions providing maxim
flame velocity.
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cosh~pb!5H 12
lc

2

4R2 S 114vF12
lc

2RG D 22J 1/2

. ~90!

The pole positions depend also on the expansion coeffic
of the flame frontQ, since parameterv is a function of the
expansion coefficient. It follows from Eq.~90! that a station-
ary curved flame is impossible in a narrow 2D tube of wid
R,lc/2, when the DL instability is suppressed by therm
conduction. In a tube of widthR.lc/2 a stationary solution
with one pair of poles develops as a result of the DL ins
bility, while in the case of wider tubes solutions with a larg
number of poles are possible. The bifurcations of the so
tion for the flame velocity Eq.~87! at the pointslc/2R
51/3,1/5, . . . that one can see in Fig. 3 correspond to tra
sitions to solutions with a larger number of poles.

Therefore, for wide tubesR.3lc/2 solution of Eq.~88! is
not unique. Different solutions for a curved stationary flam
front may have a different number of pole pairsM. Even
more, for a fixed tube width and a fixed number of pole pa
M several stationary solutions are possible. For example
a flame with the expansion coefficientQ55 in the case of a
tube widthR52.16lc ~i.e., for lc/2R50.231) and two pairs
of polesM52 we have obtained two different solutions pr
sented in Fig. 4. Flame fronts shown in Fig. 4 propag
downwards, so that the fresh fuel is below the front and
burnt matter is above the front. According to Eq.~87! both
solutions have the same velocity of flame propagation, a

FIG. 4. Shapes of curved stationary flames with the expan
coefficient Q55 for a tube widthR52.16lc . Solutions are de-
scribed by two pairs of polesM52 in the pole decomposition
curve 1 presents the principal solution, curve 2 shows the additi
solution.
nt
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-
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e
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e
e
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as one can see in Fig. 4, they have similar shapes, though
solution is more curved than the other. It is interesting
compare the obtained solutions in the bifurcation po
lc/2R51/3 where the solutions with two pairs of polesM
52 intersect with the solution with one pair of polesM
51 determined by Eq.~90!. At the bifurcation pointlc/2R
51/3 the flame front presented by curve 1 in Fig. 4 coincid
in shape with the solution with one pair of polesM51,
which is the dominant solution for narrow tubes wi
lc/2R.1/3. By this reasoning the solution presented
curve 1 is likely to happen in reality~at least close to the
bifurcation point!, in spite of the fact that the other solutio
is more curved. In the following we will call the solutio
shown by curve 1 in Fig. 4 ‘‘the principal solution,’’ while
the solution shown by curve 2 will be called ‘‘the addition
solution.’’

V. STABILITY ANALYSIS: THE LINEARIZED
EQUATION AND THE EIGENVALUE PROBLEM

In order to study stability of the stationary solutions d
scribed in the preceding section, we consider evolution
perturbations of an infinitesimal amplitude. Since the unp
turbed solution is stationary, then the perturbations take
form

f̃~h,t!5f̃~h!exp~St!, ~91!

whereS is the scaled instability growth rate. Development
perturbations is described by Eq.~79! linearized around the
stationary solutionfs ,

]2

]h2
C̃02C̃150, ~92!

where

C̃05
Q11

2Q
S2F̂21f̃1S 11«

Q ln Q

Q21
F̂ DSf̃1Q

]fs

]h

]f̃

]h

1
~Q21!3

8Q
F ]fs

]h

]f̃

]h
2F̂fsF̂f̃G

2
Q21

2 S F̂f̃1
lc

2pR

]2f̃

]h2D , ~93!

and

n

al
C̃152
Q11

2

]2

]h2 S ]fs

]h

]Ã

]h
D 1S2~Q21!2

Q11

8Q2 F F̂fsF̂f̃2
]fs

]h

]f̃

]h
G1

Q21

2Q
SFS

]f̃

]h

]fs

]h
1F̂fs

]2

]h2 S Q21

2
f̃2ÃD

1
Q21

2
F̂f̃

]2fs

]h2 G1S2S fs

]2f̃

]h2D 1
~Q21!2

4Q2
SF ]fs

]h

]

]h
~Sf̃1F̂f̃ !1S ]f̃

]h
12

]Ã

]h
D F̂

]fs

]h
G

1SF̂F ~Q21!2

2Q
F̂fsF̂f̃1SfsF̂f̃2

Q21

2Q

]fs

]h

]Ã

]h
G . ~94!
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Here one has for the perturbed valueA

Ã5
Q11

2Q
F̂21Sf̃. ~95!

With the periodic boundary conditions imposed on the p
turbationsf̃ the linearized equation~92! poses an eigenvalu
problem with the instability growth rateS being the eigen-
value and the perturbationf̃ being the eigenfunction.

The eigenvalue problem has been solved numerica
Due to the periodic boundary conditions any perturbationf̃
may be presented in the form

f̃5(
m

M p

f̃m cos~mph!. ~96!

The unperturbed stationary solution was approximated b
similar superposition of Fourier harmonics

fs5(
m

Ms

fm cos~mph!, ~97!

where the number of harmonics employed to describe
perturbationsM p and the stationary solutionMs has been
determined by accuracy requirements. We kept the accu
in the expansion of the stationary solution about 1%, wh
the resulting accuracy of the eigenvalue problem was ab
5%. For the tube widths 3lc/2,R,5lc/2 ~i.e., for 1/5
,lc/2R,1/3) the number of harmonics needed to achie
such accuracy in the numerical solution has been up to

Substituting the Fourier representations Eqs.~96!,~97!
into the linearized equation~92! and comparing the coeffi
cients in front of the respective cosine functions cos(mph),
m50,1,2, . . . ,M p , we obtain a system of algebraic equ
tions for the unknown amplitudesf̃m that determine the ei
genvector of the problem. Zero determinant of the obtain
system provides us with the dispersion relation for the ins
bility growth rate. The instability growth rateS is given by
the roots of the determinant, which were calculated b
modified one-dimensional Newton method in the rectangu
region of the complex plane~‘‘the carpet method’’!.

VI. RESULTS AND DISCUSSION

We have investigated stability of the stationary solutio
fs of the nonlinear equation~79! corresponding to curved
stationary flames in ideal tubes in a wide range of tu
widths lc/2,R,5lc/2 ~i.e., for 1/5,lc/2R,1) for flames
with different expansion coefficientsQ53 –10 typical for
laboratory flames.

For rather narrow tubes with 1/3,lc/2R,1 curved sta-
tionary flames are represented by the solution with one
of poles M51 with the pole positions determined by th
tube width and the flame expansion coefficient through
~90!. We have found that in this range of the tube widths
instability growth rate is negativeS,0 and the curved sta
tionary flames are stable. This result agrees well with
results of numerical simulations of flame dynamics in idea
slip and adiabatic tubes performed on the basis of the c
-

y.
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plete set of hydrodynamical equations including thermal c
duction, fuel diffusion, viscosity, and chemical kinetics@6#.

We found that in wider tubes 1/5,lc/2R,1/3 the solu-
tion with one pair of poles,M51, becomes unstable and th
curved flame front is now determined by the solutions w
two pairs of polesM52. First of all the analysis was con
centrated on the principal solution with two pairs of pol
shown in Fig. 4 by curve 1, since this solution goes ov
continuously into the solution withM51 in the bifurcation
point lc/2R51/3. The instability growth rate for the princi
pal solution is shown in Fig. 5 by curve 1 for a flame wi
the expansion coefficientQ55 versus the scaled invers
tube width. As is shown in Fig. 5, close to the bifurcatio
point the principal solution is stable, but increase of the tu
width makes the stationary solution less stable. The gro
rate goes over to the positive half plane atlc/2R50.231 and
the stationary curved flame described by the principal so
tion becomes unstable (ReS.0) for the tube width larger
than the critical valueR.Rw52.16lc ~i.e., for lc/2R

,0.231). The perturbation functionf̃ at the stability limit
R5Rw for a flame with the expansion coefficientQ55 is
presented in Fig. 6. The respective perturbation of the fla
front position f̃ at the stability limits coincides with the per
turbed functionf̃ with the accuracy of the nonlinear equ
tion ~79!. As one can see, the perturbation function is rat
smooth without well pronounced wrinkles and, in that sen
it resembles the unperturbed stationary solution shown
Fig. 4. Still one can hardly distinguish the hump and the cu
for the perturbation function taking into account that in t
linear stability problem the sign of the perturbation amp
tude is indefinite.

Curved flames with other expansion coefficientsQ
53 –10 have similar stability properties. In narrow tub
1/3,lc/2R,1 the stationary flame front determined by th
solution with one pair of polesM51 is stable. For wider
tubes 1/5,lc/2R,1/3 the shape of a stationary curve
flame is given by the principal solution with two pairs o
polesM52, but this solution becomes unstable for a su
ciently wide tube. The critical tube width for which the prin

FIG. 5. The scaled instability growth rate vs the scaled inve
tube width for flames with the expansion coefficientQ55. Curve 1
shows stability of the principal solution, curve 2 shows stability
the additional solution.
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cipal solution loses stability is shown in Fig. 7 versus t
expansion coefficient of the flame. The critical value of t
parameterlc/2Rw corresponding to the stability limits de
creases with the decrease of the expansion coefficient, w
implies that the smaller the expansion coefficient, the lar
the stability domain of curved stationary flames. Taking in
account that for very small expansion coefficientsQ21!1
curved stationary flames are stable independent of the
width @15# we can expect that the critical tube width goes
infinity, Rw→`, with Q→1 and the respective critical valu
of the parameterlc/2Rw goes to zero,lc/2Rw→0, as the
expansion coefficient approaches unity,Q→1. However nu-
merical solution in these regions is very time consuming,
that we checked this tendency only forQ in the range from
Q510 to Q53, which corresponds to laboratory flam
with realistic expansion coefficients.

It is interesting to note that for all investigated tube widt
and flame expansion coefficients the perturbation growth

FIG. 6. The perturbation functionf̃ at the stability limit R
52.16lc of the principal stationary solution. The expansion coe
cient of the flame isQ55. The inset presents possible flame sha
resulting from the instability at the nonlinear stage.

FIG. 7. The stability limits of the principal solution for a curve
stationary flame vs the expansion coefficient of the flame front.
dashed line shows extrapolation of the present results into the
main of small expansion coefficients by use of@15#. The inset
shows the obtained dependence for realistic expansion coeffic
Q53 –10.
ch
r

be

o

te

is a real value with zero imaginary part. The last fact impl
that at the stability limits, for which ReS50, the more gen-
eral condition,S50, holds and the linearized equation~92!
takes a simple form

Q
]fs

]h

]f̃

]h
1

~Q21!3

8Q
F ]fs

]h

]f̃

]h
2F̂fsF̂f̃G

2
Q21

2 S F̂f̃1
lc

2pRw

]2f̃

]h2D 50. ~98!

Equation~98! is nothing but the scaled linearized stationa
equation ~1! written in the considered 2D configuration
Therefore the problem of stability limits of a curved statio
ary flame can be solved even in the scope of the station
equation~1! for curved flames, while the complicated time
dependent nonlinear terms of the complete equation~79! do
not influence the stability limits. The problem of stabilit
limits is formulated as an eigenvalue problem of the stati
ary nonlinear equation~1! linearized around the stationar
solution with the inverse critical tube widthlc/2Rw playing
the role of an eigenvalue and perturbation of the flame fr
playing the role of the eigenfunction.

The important question is the outcome of the obtain
instability at the nonlinear stage: at this point interpretat
of the instability is not obvious at all. As one can see in F
6, perturbations of the flame front that grow due to the ins
bility are rather smooth and resemble the shape of the
tionary curved flames. Because of the smooth shape of
perturbation function it is unlikely that the instability leads
strong wrinkling of a flame front as described in@8#. For this
reason the first guess about the outcome of the instabilit
that development of the instability makes a flame front m
curved, though it preserves the smooth flame shape.
might expect that the principal stationary solution shown
curve 1 in Fig. 4~less curved solution! develops because o
the instability into the additional stationary solution show
by curve 2 ~more curved solution!. In order to check this
possibility, we have investigated stability of the addition
solution as well. The instability growth rate for the addition
solution is presented in Fig. 5 by curve 2 for a flame with t
expansion coefficientQ55. In this case the additional solu
tion becomes unstable for narrower tubes than the princ
one with the critical tube width for the additional solutio
beingR51.69lc ~i.e., lc/2R50.295). Therefore the princi
pal solution cannot develop into the additional one: when
principal solution just loses stability, the additional solutio
is already strongly unstable. At the same time we have
found any other stable stationary solution of the same pe
for the tube width under consideration. Thus the first gu
that the principal solution goes over to another station
solution of a similar smooth shape is not confirmed.

The other guess is that the instability starts from smo
perturbations at the linear stage, but leads to an extra cus
a flame front at the nonlinear stage of the instability simi
to Fig. 1. This guess is illustrated in the inset of Fig. 6, whe
the perturbation functionf̃ multiplied by a small factor 0.08
is formally added to the principal stationary solution. T
flame front in the inset propagates downwards. As one
see, the resulting flame shape looks like the flame shap
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Fig. 1~b!, which is an intermediate step in the developme
of the secondary DL instability. It is noteworthy that th
starting flame shape in Fig. 1~a! resembles the stationar
flames described by the method of pole decomposition, w
the final flame shape in Fig. 1~c! is quite different from the
shapes found by this method. Besides, the velocity of fla
propagation in Fig. 1~c! noticeably exceeds the maximal v
locity of curved stationary flames obtained by the method
pole decomposition. A strong point in favor of the seco
assumption on the nonlinear outcome of the obtained in
bility is that the stability limits found in the present paper a
quite close to the stability limits evaluated for the second
DL instability in @8,9#. Particularly, the curved flames wit
an extra cusp like that presented in Fig. 1 have been
served in the 2D numerical simulations@9# for the tube width
R52lc ~i.e., for the scaled parameterlc/2R50.25) and for
the expansion coefficient of the flameQ56.5. According to
the results of the present paper, the stationary curved fl
front with the expansion coefficientQ56.5 loses stability
for the critical tube widthRw52.14lc ~the scaled inverse
tube width islc/2R50.234). Taking into account the accu
racy of the present paper and the accuracy of the nume
simulations@9#, one can say that the obtained stability lim
agree very well with the tube width for which the seconda
DL instability has been observed in@9#. Besides, the numeri
cal experiments@9# have been performed for nonzero Ma
numbers of the fuel flow determined as the ratio of the fla
velocity to the sound speed in the fuel, while in the pres
paper isobaric flames are considered. Particularly, cur
flames with an extra cusp presented in Fig. 1 have b
observed for the Mach number equal to 0.1. Since increas
the Mach number of the fuel flow enhances the DL insta
ity, it is expected that for isobaric flames the curved flam
with extra cusps develop in somewhat wider tubes~about
10% wider!, which comes even closer to the stability limi
found in the present paper. The numerical simulations@9#
have been performed on the basis of the complete se
hydrodynamical equations including thermal conductio
fuel diffusion, viscosity, and chemical kinetics. Dynamics
a flame in a 2D tube with ideally adiabatic and slip walls h
been investigated.

It should be pointed out that the semiqualitative estima
of the stability limits of the secondary DL instability pe
formed in @8# are also rather close to the stability limits o
tained in the present paper. For example, for the flames
the expansion coefficientQ58.3 the critical tube width was
evaluated in@8# as Rw'2.5lc , while calculations of the
present paper provide a close value,Rw'2.35lc . Besides,
the estimates@8# have been performed under the assumpt
of a well developed secondary DL instability far from th
stability limits and one should not expect more than an or
of magnitude evaluation on the basis of the analysis@8#.

It is interesting to compare the theoretical results of
present paper with the experimental results on the DL in
bility of flames in tubes and of expanding flames@26–
28,32,29,30#. At this point one should notice that exper
ments on flames in tubes have been performed typicall
the configuration of cylindrical tubes and characteristic R
nolds numbers have been calculated with respect to the
diameter. In this sense the width of an ideal 2D chan
considered in the present paper should be treated as a
t
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radius because of the symmetry reasons. Then the lin
theory @4# predicts development of the primary DL instab
ity for the Reynolds numbers Re.20 in the case of a flame
with unit Lewis number and constant transport coefficien
In the case of flames with a realistic dependence of ther
conduction coefficient on temperaturek}AT the critical
Reynolds number for the primary DL instability becom
somewhat larger. For example, in the case of propane fla
the primary instability of flames in tubes is expected at R5
30–40 @24#. However, the primary DL instability is rathe
difficult for observations in tubes since it results in smoo
stationary flame shapes. As has been pointed out in@8#, such
stationary curved flames are observed for flames in tu
with Reynolds numbers up to a few hundred~see also@26–
28,32#!. On the contrary, the secondary DL instability
clearly seen on flame fronts in tubes in the form of fi
cellular structure or flame self-turbulization. The second
DL instability is well developed in tubes at Re'103 @8#.
Results of the present paper give the stability limits of t
secondary DL instability Re'80 and Re'140–160 for
flames with constant transport coefficients and for prop
flames, respectively. Besides, one should remember tha
secondary instability becomes clearly visible only for flam
sufficiently far from the stability limits. For example, th
qualitative estimates@8# predict the stability limits of the
secondary instability about Re5100–200 and indicated tha
the instability may be clearly observed only at Re'103. At
lower Reynolds numbers flame stretch slows down the s
ondary instability considerably. Taking into account the e
timates @8# the results of the present paper agree with
experimental observations of the secondary DL instability
flames in tubes. In a number of experiments detonation t
gering by a turbulent flame has been reported~see, for ex-
ample, @1,2#!. Triggering of the detonation ahead of th
flame propagating in a closed tube due to the weak sho
and sound waves generated by the accelerated flames
been considered in@31#. In the scope of the present analys
it is impossible to draw any conclusion about transition to
detonation, since the analysis has been performed using
isobaric approximation.

The secondary DL instability has been observed also
experiments on expanding flames, for which both the p
mary and secondary instability may be clearly seen o
flame front. Particularly, it was observed in@30# that flame
surface in lean methane-air mixtures becomes wrinkled
some critical radius of the front with characteristic cell si
about 2 cm. As the flame radius increased together with
cell size, a fine structure developed at the initial flame ce
The size of the primary cells at this instant was about 6–
cm. While the small cells at the flame front may be inte
preted as the primary DL instability, development of the fi
structure on larger cells corresponds to the secondary in
bility. It is remarkable that the secondary instability star
when the cell size increases with respect to the initial one
a factor of 3–5. Particularly, according to the present th
retical results the expected increase of the cell size is abo
which agrees very well with the experimental observatio
Similar dynamics of cells at the front of an expanding flam
has been observed in@29#.

Thus, good agreement of the stability limits for curve
stationary flames obtained in the present paper with
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evaluations of the stability limits in the numerical simul
tions @9#, in the semiqualitative analysis@8#, and with experi-
mental observations supports the assumption that the in
bility found in the present paper is the secondary D
instability discussed in the Introduction. Still, the conclusi
about the obtained instability is possible only on the basis
direct numerical simulations of the nonlinear time-depend
equation~79! that we plan to publish in the future.

As has been pointed out, development of the second
DL instability far from the stability limits may be interprete
as self-turbulization of a flame front@10#. Therefore, it is
interesting to evaluate the fractal dimension of a turbuliz
flame front on the basis of the present theoretical results.
fractal structure of a flame front may be described as cas
ing humps and cusps: humps of smaller scales develop
humps of large scales and so on. The general idea of
process may be understood from the Koch curves c
structed as a cascade of triangles as shown in Fig. 8@25#.
Taking into account similarity of a fractal flame and th
Koch curve we can estimate increase of the flame velo
for a spontaneously turbulized flame@10,11#. Let every step
of the fractal cascade decrease the cell size by a fa
b:lk115lk /b, and increase the flame velocity by a fact
b,Uk115bUk . The cascading process is limited from b
low by the cutoff wavelengthlc and limited from above by
the tube widthR. The fractal structure implies a large num
ber of cascadesN5 ln(R/lc)/ln b@1 and the fractal flame ve
locity is

U fractal5UN5U fb
N5U f S R

lc
D d

, ~99!

whered5 ln b/ln b is the excess of the fractal dimension ov
the embedding dimension. The fractal excess is typically
ferent in 2D and 3D configurations and the fractal dimens

FIG. 8. Three steps in construction of the Koch curve.
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of the self-turbulized flame front is given by the values
1d2D and 21d3D for 2D and 3D flames, respectively. Th
fractal dimension~or the fractal excessd) of a flame front is
the main parameter that determines velocity of a sponta
ously turbulized flame on large length scales much lar
than the cutoff wavelength. One can estimate the fractal
cess on the basis of the theory of dynamics and stability
curved stationary flames considering a curved station
flame as one step of the cascade similar to the Koch
angles. Then increase of the flame velocity on one step of
cascade~the factorb) is evaluated by the maximal amplifi
cation of the flame velocity for a curved stationary flameb
511Um /U f . In the 2D geometry the maximal velocity am
plification is given by the analytical formula Eq.~3!, so that
the factorb in the 2D case depends on the expansion co
ficient of the flame as

b2D511
Q

2

~Q21!2

Q31Q213Q21
. ~100!

In the 3D case the respective velocity amplification is a
proximately twice larger and the factorb may be estimated
asb3D5112(b2D21) @13#. For the realistic expansion co
efficients Q55 –10 the factorb is aboutb2D51.25–1.35
and b3D51.5–1.7 for 2D and 3D geometries, respective
The increase of the length scale for one step of the fra
structure~the factor b) is given by the stability limits of
curved stationary flamesb5Rw /Rc . Here Rc is the tube
width at which the DL instability overcomes the stabilizin
influence of thermal conduction and curved stationary flam
develop, whileRw is the tube width for which curved sta
tionary flames become unstable with respect to the secon
DL instability. In the 2D configuration of a tube with ideall
slip and adiabatic walls one hasRc5lc/2. The stability lim-
its of curved stationary flames obtained in the present pa
the evaluations@8#, and the numerical simulations@9# give
the estimateb5Rw /Rc54 –5 for flames with realistic ex-
pansion coefficients. Taking these values into account
can evaluate the fractal excess for spontaneously turbul
flames in 2D and 3D geometries as

d2D50.16–0.19, d3D50.3–0.35 ~101!

and the respective fractal dimensions as 1.16–1.19 and
2.35. The analytical estimates agree quite well with the
perimental results on the fractal dimension of accelerat
self-turbulized spherical flames, where the fractal dimens
2.33 has been obtained for expanding 3D flames@10#.
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